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Abstract
The scattering of plane acoustic waves by a vortex in a two-dimensional
superfluid is examined for small Mach number M . The solution is developed
from a systematic expansion of the governing equations in three separate
regions: an inner vortical region which scales as the healing length, an
interaction region governed by irrotational hydrodynamics and an outer wave
region. The solutions in the different regions are matched together. The
leading-order scattered field occurs at O(M2δ) in the wave region, where δ

is the small non-dimensional amplitude of the incoming acoustic wave. The
far-field behaviour of the wave-region solution shows that a different form of
the expansion is required in the forward scatter direction: this corresponds to
the expression previously derived for the acoustic Magnus force.

PACS numbers: 74.90.+u, 43.40.+s

1. Introduction

The advent of high-temperature superconductivity has led to a renewal of interest in acoustic
scattering due to vortices in a superfluid, starting with Ao and Thouless (1993) and continuing
with Sonin (1997), Stone (2000) and other papers. Similarly, the proposal to measure vorticity
in classical fluids using acoustic methods (Lund and Rojas 1989) has led to the development
of useful experimental techniques (Labbé and Pinton 1998, Oljaca et al 1998), and also led to
renewed interest in acoustic scattering due to vortices in a classical fluid.

The scattering of sound by vortices in classical fluids and superfluids has a long history,
dating back to Obukhov (1941) and Pitaevskii (1959) respectively. The original source
of interest in the classical fluids literature came primarily from attempts to understand
the scattering of sound by turbulence (Kraichnan 1953, Lighthill 1953, Batchelor 1956).
Subsequent work concentrated generally on the scattering of sound by simple vortical
structures. The superfluid literature has concentrated mostly on the momentum transfer
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between the acoustic field and the vortex (for a review of this and many other topics to do
with vortices in nonlinear fields, see Pismen 1999).

The classical fluids literature considered the cases of short and long waves, measured
relative to the size of the vortex, which have been called the WKB and Born limits. The
latter case was investigated by, among others, Müller and Matschat (1959), Fetter (1964) and
Fabrikant (1983). These authors all found that the scattered field had infinite scattering far from
the vortex in the forward direction, i.e. the direction in which the plane wave was originally
propagating.

Colonius et al (1994) carried out direct numerical simulations of the Navier–Stokes
equations to compute the scattering. The results of their computational aeroacoustic calculation
agreed well with the predictions of the Born limit, except in the forward scatter direction,
where the scattering amplitude was finite. Independently, Sakov (1993) had found a uniformly
valid solution which showed there was a transition region in the forward scatter direction.
(Nore et al (1994) performed numerical simulations for superfluids, but not specifically of
scattering.)

All of the above work used what might be called the Lighthill analogy, in which the
equations of motion are transformed into a forced wave equation, and the forcing term is
replaced by the interaction term between wave and vortex. The validity of this approach is
not immediately apparent, since it is not based on a systematic treatment of the equations of
motion. Lighthill theory for aerodynamic sound generation had been shown to be consistent
using matched asymptotic expansions (MAEs) by Crow (1970). Ford and Llewellyn Smith
(1999; hereafter FLS) solved the problem of two-dimensional acoustic scattering of a plane
wave by an arbitrary axisymmetric vortex with non-zero circulation using MAEs and recovered
previous results, thereby putting them on a rigorous footing. Llewellyn Smith and Ford (2001a,
2001b) carried out the same programme for acoustic scattering by three-dimensional vortical
flows. The results are different in the sense that there is no apparent singularity to resolve, but
there are also similarities because matching is also needed to obtain the far-field scatter.

Parallel lines of investigation in the superfluid literature have used similar Lighthill-
analogy techniques, and obtained the same predictions for the scattering amplitude. The
aim of this work is to compute scattering of a plane acoustic wave due to a superfluid vortex
from a systematic expansion of the superfluid equations. We shall use the Gross–Pitaevskii
equation to model the superfluid.

Following FLS (and originally Crow 1970), the procedure used here starts from an
asymptotic expansion in terms of the Mach number, M , which is as usual the ratio of the
characteristic velocity of the vortex to the sound speed. The superfluid vortex has a natural
scale given by the healing length, and there is a wave region with length scale given by the
wavelength of incoming waves, where the dominant dynamics are those of linear acoustics.
However, unlike the MAE approach to dissipative dynamics of Neu (1990) and Pismen and
Rodriguez (1990), a third region is required: this is an interaction region, where the dominant
dynamics are those of irrotational hydrodynamics and where the vortex and wave interact. The
length scale of this region is fixed by relating the Mach number of the vortex to the Strouhal
number of the incoming wave compared to the vortex. The Strouhal number is essentially the
nondimensional frequency of the incoming wave.

The amplitude of the incoming acoustic wave is taken to be small, in the sense that its
characteristic velocity potential in the interaction region is O(δ) smaller than the potential due
to the vortex, where δ � 1. We are interested only in the linear scattering.

The plan of the paper is as follows. Section 2 outlines the equations and the physical
flow considered, and sets up the asymptotic procedure. The leading-order vortical and wave
flows are calculated. Sections 3–5 solve the resulting equations at successive orders in δMn.
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Section 6 examines the far-field behaviour of the solution, and section 7 concludes. The
calculations are similar to those of FLS, but the derivation and procedure are outlined in a way
which should be intelligible on their own. The steps involved in the calculation of the far-field
behaviour are not reproduced however. The results presented here are not new (see Pismen
1999, Lund and Steinberg 1995), but the aim is to present results on a rigorous footing, and
highlight the similarities and differences with the classical case.

2. Statement of the problem

2.1. Governing equations and flow configuration

We consider a superfluid governed by the Gross–Pitaevskii equation (Donnelly 1991)

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ − ψ(E − V0|ψ |2), (1)

appropriate to a weakly interacting Bose gas. This is a nonlinear Schrödinger equation for a the
single-particle wavefunction ψ(x, t) governing an assembly of bosons of mass m, with V0 the
strength of the δ-function interaction potential between the bosons, and E the single-particle
energy. The Madelung transformation ψ = ReiS , with R and S real, leads to

∂ρa

∂t
+ ∇ · (ρau) = 0, (2)

∂φ

∂t
+

1

2
(∇φ)2 − h̄2

2m2

∇2ρa
1/2

ρa
1/2

− E

m

(
1 − V0

Em
ρa

)
= 0, (3)

where ρa = mR2 is the total density and φ = h̄S/m is the velocity potential, to which the
velocity u is related through u = ∇φ. In the language of fluid mechanics, (2) is the continuity
equation and (3) is Bernoulli’s equation. The third term in (3) is the quantum pressure.

We now non-dimensionalize variables. The phase S is dimensionless, so the physical
variable φ must scale like h̄/m. In fluid terms, φ is a velocity potential and scales as φ ∼ UL,
where U and L are the velocity and length scales appropriate to the interaction region where
the acoustic flow will interact with the vortical flow. The timescale of the interaction region
is taken to be T = L/U so that advective effects will enter the problem. The natural scaling
for density is ρ∞ ≡ Em/V0, while the speed of sound for the medium at infinity is given by
c2
∞ ≡ E/m. The non-dimensional amplitude of the incoming wavefield is taken to be δ � 1,

and the linear scattering problem requires the solution of the equations proportional to δ.
The Mach number appropriate to the interaction region is defined by M ≡ U/c∞. It may

also be viewed as the ratio of vortical and interaction length scales, since M2 = 2a2/L2, where
the healing length, a ≡ h̄/

√
2mE, is the length scale appropriate to the vortical region.

We may now determine the length scale of the interaction region by fixing the value of the
Strouhal number St ≡ ωL/U , which gives the ratio of the vortex turn-over time to the incoming
acoustic wave timescale. The Mach number of the flow is then given by M2 = St−1h̄ω/E.
We assume that this quantity is small. There are then three regions in the flow: a wave region
with scale LM−1, an interaction region with scale L and a vortical region with scale LM . Note
that in the acoustic case, there are just two regions, called in FLS the wave region and vortical
region. The latter corresponds to both interaction and vortical regions here. In the wave and
interaction regions, the density departs from its value at infinity by O(M2), so we may write
ρa = ρ∞(1 + M2ρ). We are thus led to three sets of equations in the three regions.

In the wave region, the appropriate physical coordinate is X ≡ Mx, and the velocity
potential and density (corresponding to ρ) are denoted by � and H respectively. The governing
equations are then
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∂H

∂t
+ ∇2� + M2∇ · (H∇�) = 0, (4)

∂�

∂t
+

1

2
M2(∇�)2 − M2 ∇2(1 + M2H)1/2

2(1 + M2H)1/2
+ H = 0, (5)

where gradient operators act with respect to the wave variable X.
In the interaction region, the equations become

M2 ∂ρ

∂t
+ ∇2φ + M2∇ · (ρ∇φ) = 0, (6)

∂φ

∂t
+

1

2
(∇φ)2 − ∇2(1 + M2ρ)1/2

2(1 + M2ρ)1/2
+ ρ = 0. (7)

In this region, once the potential φ at a certain order has been calculated, the density ρ may
be read off directly from (7). This is different from the classical case where the pressure and
density must be solved after computing the velocity, which includes a rotational component.

Finally, there is a vortical region in which the quantum pressure is a leading-order quantity.
The physical length scale is then the healing length, a, and the appropriate physical coordinate
is ξ ≡ √

2M−1x. The equations will be written in terms of the velocity potential ϕ and the
nondimensional total density squared, R, so that now ρa = ρ∞R2. This leads to

M2 ∂R

∂t
+ 2∇R · ∇ϕ + R∇2ϕ = 0, (8)

M2 ∂ϕ

∂t
+ (∇ϕ)2 − ∇2R

R
+ R2 − 1 = 0, (9)

where the gradients act with respect to the vortical variable ξ. The time-derivative terms in the
vortical region are small in light of the scalings considered here.

2.2. Leading-order solution in the vortical region

The expansion for the solution in the vortical region takes the form

ϕ = ϕ0 + δ(ϕ01 + Mϕ11 + M2ϕ21) + O(M2, δM3, δ2), (10)

R = R0 + δ(R01 + Mρ11 + M2ρ21) + O(M2,M3δ, δ2). (11)

The leading-order solution in the vortical region is the GP vortex given by ϕ0 = θ , R0(η),
where η and θ are polar coordinates in the vortical region. The function R0(η) satisfies

R′′
0 +

1

η
R′

0 − R0

η2
+ R0(1 − R2

0) = 0. (12)

The function R0(η), shown in figure 1, is monotonically increasing and satisfies R0 =
0.583η + O(η3) for small η and R0 = 1 − 1

2η
−2 + O(η−4) for large η.

2.3. Leading-order solution in the intermediate region

The expansion for the solution in the intermediate region takes the form

φ = φ0 + δ(φ01 + Mφ11 + M2φ21) + O(δM3, δ2), (13)

ρ = ρ0 + δ(ρ01 + Mρ11 + M2ρ21) + O(M2,M3δ, δ2). (14)

The leading-order solution is given by the steady axisymmetric solution to

∇2φ0 = 0, 1
2 (∇φ0)

2 + ρ0 = 0, (15)

with purely azimuthal flow. This leads to φ0 = Aθ and ρ0 = − 1
2A

2/r2. Matching to
the vortical region gives A = 1. This is just the velocity field due to a point vortex with
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Figure 1. The GP vortex R0(η).

circulation 2π , which is a solution of the irrotational flow equation for φ0. This solution could
have been obtained as the large-η limit of (12). Note that the leading-order part of R0 in the
vortical region matches onto the constant background density 1, and it is the correction term
of order η−2 that matches to φ0 in the intermediate region.

For large r , the velocity potential remains an O(1) term, but the density decays like r−2,
and will hence match to an O(M2) term in the wave region. However, this term is not linear
in δ, and does not appear in the linear scattering problem.

2.4. Leading-order solution in the wave region

The expansion for the flow in the wave region takes the form

� = �0 + δ(�01 + M2�21) + O(δM4, δ2), (16)

H = δ(H01 + M2H21) + O(M2,M4δ, δ2). (17)

The velocity potential �0 = θ matches onto the velocity potential φ0 in the intermediate
region. This is again the potential due to a point vortex at the origin in an irrotational fluid.

2.5. The solution in the wave region at O(δ)

The incoming acoustic wave satisfies

∂H01

∂t
+ ∇2�01 = 0,

∂�01

∂t
+ H01 = 0. (18)

We take the solution

H01 = ei(kX−ωt), �01 = − i

k
ei(kX−ωt), (19)

to aid comparison with the classical case (see FLS). The real part of all fields will be understood
in what follows. The dispersion relation is taken here to be ω = k, so that the wave is coming
from X = −∞. The O(δ) solutions in the intermediate and vortical regions will be computed
as part of the full solution. For small values of X, the incoming wave takes the form

H01 = e−iωt (1 + ikX − 1
2k

2X2 + · · ·), �01 = − i

k
e−iωt

(
1 + ikX − 1

2
k2X2 + · · ·

)
. (20)
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3. The solution to O(δ)

3.1. The solution in the intermediate region at O(δ)

The solution in the intermediate region at O(Mδ) must match onto the solutions in the vortical
and wave regions. The matching procedure could be carried out using van Dyke’s rule or using
an intermediate variable, but we shall be content merely to use informal limit arguments. As
r → ∞, we require

φ01 → − i

k
e−iωt (21)

to match onto the incoming wave, since the solution in the intermediate region at any order is
determined by the velocity potential.

The governing equations at O(δ) are

∇2φ01 = 0,
∂φ01

∂t
+ ∇φ0 · ∇φ01 + ρ01 = 0. (22)

The velocity potential at this order is a single-valued harmonic function and hence takes the
form

φ01 =
∞∑

n=1

(anr
n + bnr

−n)einθ + a0 + b0 log r. (23)

Matching onto the wave region shows that the coefficients an must be zero for n > 0 since
they would otherwise require terms of O(M−nδ) in the wave region, which do not exist.
The coefficient b0 is also excluded because it has no counterpart in the wave region at O(δ).
Matching onto the vortical region shows that the remaining bn must all be zero, since there are
no terms of O(M−nδ) in the vortical region. We are hence left with

φ01 = − i

k
e−iωt , ρ01 = e−iωt , (24)

after the matching condition has been applied and ρ01 has been obtained from (22).

3.2. The solution in the vortical region at O(δ)

The form of (24) shows that there must be an O(δ) component of the solution in the vortical
region. At this order, the system (8), (9) becomes

2R′
0
∂ϕ01

∂η
+

2

η2

∂R01

∂θ
+ R0∇2ϕ01 = 0, (25)

2

η2

∂ϕ01

∂θ
− 1

R0
∇2R01 +

∇2R0

R2
0

R01 + 2R0R01 = 0. (26)

These equations form a linear fourth-order system with coefficients that depend only on η.
Hence different azimuthal modes may be considered separately.

Matching onto (24) will give a condition for the axisymmetric component of R01 and
ϕ01. For azimuthal wavenumber 0, the velocity potential that satisfies (25) is ϕ

(0)
01 =

A + B
∫ η

(uR2
0)

−1 du. The integral has a logarithmic singularity at the origin, so we pick
the solution with B = 0 that behaves acceptably there.

For large η, R01 behaves like e±√
2η: this will either give an exponentially small solution

that cannot be matched at any order, or an exponentially large solution, which is unphysical.
The origin is a regular singular point for (25), and the resulting solution for R01 does in fact



Scattering of acoustic waves by a superfluid vortex 3603

grow exponentially for large η. Its amplitude must hence be zero. The axisymmetric part of
the solution at O(δ) in the vortical region is hence

ϕ
(0)
01 = − i

k
e−iωt , R

(0)
01 = 0, (27)

matching the potential to φ01 in the intermediate region.
There may be other azimuthal modes present in the solution at O(δ). As we shall see,

azimuthal mode one is necessary to match onto terms of O(Mδ) in the intermediate region.
This solution must be well behaved at the origin and decay as η → ∞. Such a solution exists
and takes a very simple form: it is the Goldstone mode

ϕ
(1)
01 = (β cos θ + γ sin θ)η−1, R

(1)
01 = (−γ cos θ + β sin θ)R′

0, (28)

where the functions β and γ depend on time. (It is convenient to consider the general case
here and return to time-harmonic behaviour later.) The Goldstone mode (28) is different from
the Goldstone mode of the radial Rayleigh equation in circular geometry (see FLS): the latter
has a well defined amplitude obtained by matching onto the wavefield. Here, however, the
relation between the coefficients β and γ is as yet undetermined.

4. The solution to O(Mδ)

The matching condition for the O(Mδ) solution in the intermediate region is

φ11 → xe−iωt (29)

as r → ∞. The governing equations at this order are again (22), but for the O(Mδ) variables.
The solution takes the same general form (23). The requirements that the solution match onto
the wave region, and not produce terms larger than O(1) in both vortical and wave regions
leads to

φ11 = xe−iωt + (c cos θ + s sin θ)r−1e−iωt (30)

after the matching is carried out, with c and s undetermined constants.
The O(r−1) terms will match onto terms in the wavefield at O(M2δ) which is where the

acoustic scattering takes place. The x-term in φ11 will match onto an O(M2δ) term in the
vortical region, while the r−1 terms in φ11 will match onto O(δ) terms in the vortical region,
namely the solution given by (28).

Axisymmetric terms in φ11 are impossible: they would have to be either constant in space
or logarithmic. The former cannot match onto any causal solution in the wave region, while
the latter match onto the integral in the previous section which is not an acceptable solution.
Hence there are no terms in the vortical region at O(Mδ).

5. The solution to O(M 2δ)

5.1. The solution in the vortical region at O(M2δ)

The presence of the x-term in (30) shows that there is a non-zero azimuthal mode-one
component to the solution at O(M2δ) in the vortical region. This form of this term in the
limit of large η determines the coefficients β and γ of the Goldstone mode, as we shall see.

The equations in the vortical region at O(M2δ) differ from those at O(δ) only by the
presence of time-derivatives of the O(δ) solution. The governing equations are

∂R01

∂t
+ 2R′

0
∂ϕ21

∂η
+

2

η2

∂R21

∂θ
+ R0∇2ϕ21 = 0, (31)

∂ϕ01

∂t
+

2

η2

∂ϕ21

∂θ
− 1

R0
∇2R21 +

∇2R0

R2
0

R21 + 2R0R21 = 0. (32)
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In general, these equations do not have a closed-form solution and must be solved numerically.
However, we shall be able to extract the information we need by considering (32) in the limit
of large η.

The matching condition for the potential is ϕ21 → r cos θ e−iωt as η → ∞. Equating the
various terms in (32) for azimuthal mode one shows that, for large η,

ϕ
(1)
21 = η√

2
cos θ e−iωt + µ cos(θ − θ0)η

−1 + O(η−3), (33)

R
(1)
21 = (σ cos θ + χ sin θ)η−1 + O(η−3), (34)

where σ and χ are again functions of time. The second term in ϕ
(1)
21 is harmonic and plays no

further part. Substituting in these values into the governing equations leads to four ordinary
differential equations for γ , β, σ and χ , which may be solved to give

γ =
√

2e−iωt + γ0, β = β0, σ = 0, χ = 0, (35)

where γ0 and β0 are constants. Since we are looking for a purely time-harmonic solution, we
have γ0 = β0 = 0. Note that R(1)

21 = O(η−3) as expected, since ρ01 is axisymmetric.
We now finish the matching procedure to determine φ11 in the intermediate region,

using (28) and (35). The xe−iωt term has already been matched onto the wave region and
onto the vortical region. We now match the r−1 term to ϕ01 onto the vortical region and obtain
s = iω−1e−iωt .

5.2. The solution in the wave region at O(M2δ)

At O(M2δ), the equations in the wave region are
∂H21

∂t
+ ∇2�21 + ∇ · (H01∇�0) = 0, (36)

∂�21

∂t
+ ∇�0 · ∇�01 + H21 = 0. (37)

This leads to the forced wave equation

∂2�21

∂t2
− ∇2�21 = ∇�0 · ∇H01 − ∇�0 · ∂∇�01

∂t
= −2ik

Y

R2
ei(kX−ωt). (38)

We may write the solution to this equation as

�21 = − 1
2 iψ e−iωt +

∞∑
n=0

H(1)
n (kR)[An cos nθ + Bn sin nθ ] e−iωt , (39)

where ψ satisfies

(−k2 − ∇2)ψ = 4k eikX ∂

∂Y
ln R, (40)

H(1)
n is a Hankel function of the first kind (Abramowitz and Stegun 1965) and the constants

An and Bn must be determined by matching to the solution in the vortical region. We know
that An and Bn must be zero for n > 2 to avoid solutions that cannot be matched to the vortical
region.

From FLS, we may write ψ as

ψ = sgn Y

∫ ∞

−∞

eilX

l − k
[e−|l−k||Y | − e−(l2−k2)1/2|Y |] dl. (41)

The following result is required for the matching:

ψ = 2kY
(
1 − γ − ln

(
1
2kR

) − 1
2 iπ

)
+ O(R2 ln R), (42)

where γ = 0.5772 . . . is Euler’s constant. Note that ψ(kX) is an odd function of Y , as may
be seen from (40).
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5.3. The solution in the intermediate region at O(M2δ)

At O(M2δ), the governing equation is

∇2φ21 = −∂ρ01

∂t
= iωe−iωt . (43)

A convenient solution is

φ21 = 1
2 iωx2 e−iωt +

∞∑
n=1

(enr
n + fnr

−n)einθ + e0 + f0 log r. (44)

The matching condition as r → ∞ is

φ21 → 1
2 ikx2e−iωt . (45)

Matching to the far field shows that en = 0, since these terms cannot match to any causal
solutions in the wave region. Matching onto the vortical region also gives fn = 0 for n > 2.
However, the values of f1 and f2, which match onto the vortical region at O(Mδ) and O(δ)

respectively are not required since they only come into the matching to the wave region at
orders higher than O(M2δ) As a result, we need not compute them.

5.4. Matching at O(M2δ)

To complete the matching at O(M2δ), we need to computeAn andBn in (39). These coefficients
must vanish for n > 1 for consistency with the vortical region.

There can be no A0 or B0 terms as was explained for the the O(Mδ) solution in the
intermediate region. The ψ contribution to the O(M2δ) solution will match onto terms in the
intermediate region at O(M4δ) (actually at O(M4 log M δ) to be precise). What remains is
to compute A1 and B1. These terms match onto the intermediate region solution at O(Mδ)

from (30). The matching givesA1 = 0 andB1 = 1
2 iksF , using the resultH(1)

1 (z) ∼ −2i(πz)−1

for small z.
Hence the solution in the wave region at O(M2δ) is

�21 = − 1
2 iψ(kX)e−iωt − 1

2πH
(1)
1 (kR) sin θ e−iωt . (46)

This may be obtained by substituting 5 = 2π into (4.20) of FLS. The density is now obtained
from (37) and takes the form

H21 = 1

2
ωψ(kX)e−iωt − 1

2
iπωH

(1)
1 (kR) sin θ e−iωt +

Y

R2
ei(kX−ωt). (47)

This expression is identical to the pressure and density in the classical case. Both potential
and density are odd functions of Y .

6. Far-field analysis

Following FLS, we may compute the far-field behaviour of H21. The asymptotics of the
function ψ are slightly non-standard, but may be calculated by careful use of the method of
steepest descents. The result comes out to be

�21 =(π − θ)eikX− 1

2
i cos θ cot

(
1

2
θ

)(
2π

kR

)1/2

ei(kR−π/4) + O

(
(kR)−3/2 cot3

(
1

2
θ

))
. (48)

This expression is valid for θ in the range 0 < π < θ . The result for −π < θ < 0 may
be obtained from the fact that �21 is an odd function of Y . The second term in (48) is the
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one that gives the infinite scattering amplitude in the forward direction. Most papers starting
from the Lighthill analogy for classical fluids have missed the first term, although not Sakov
(1993). The expansion (48) breaks down close to the forward scatter direction. The expansion
is non-uniform in space, and near the positive X-axis, a different expansion holds.

There is a distinguished scaling for kRθ2 = O(1), which leads us to define a new variable
ϑ = θ(kR/2)1/2. This corresponds to a parabolic region around the forward scatter direction.
The solution in this area is called the acoustic Magnus force by Pismen (1999; see also
Iordanskii 1966). In this region,

H21 = − 1
2 ieikRF (ϑ)e−iωt + O(kR−1/2), (49)

where the function F is defined by

F(ϑ) = 4π1/2ei(π/4−ϑ2)

∫ η

0
eiu2

du = 2−3/2π ei(π/4−ϑ2)(C + iS)[(2/π)1/2ϑ]. (50)

The functions C and S are Fresnel integrals (Abramowitz and Stegun 1965). The form (49)
matches onto the expansion (48) for large ϑ .

7. Conclusions

The scattering due to a superfluid vortex turns out to be the same as that due to a classical
vortex with circulation 2π , although the nature of the interaction region between wave and
vortex is different. The asymptotic procedure used here forces the vortex to be ‘oscillating’
rather than ‘pinned’, which seems to be the situation that in any case is usually considered (cf.
4.61 of Pismen 1999). The scattered field has amplitude O(M2δ) in the far field. The acoustic
drag and Magnus forces correspond naturally to the far-field expansion of the wave-region
scattered field in regions far from, and near to, the forward scatter direction, respectively.

The results of this work show that the classical and superfluid vortices scatter sound in
a similar fashion, even though the superfluid vortex has a further level of complication in its
dynamics. The Goldstone mode of the vortex plays a key role in the solution in both cases.
For the superfluid vortex it is a steady mode to leading order.

As mentioned earlier, much of the recent interest in acoustical scattering by classical fluid
vorticity has been aroused by the development of new non-intrusive experimental techniques
to measure vorticity, as in Labbé and Pinton (1998), Oljaca et al (1998) and Manneville et al
(1999). Lund and Steinberg (1995), following the approach of Lund and Rojas (1989) have
suggested using second sound to detect and measure quantum vorticity, and their results are
similar to those obtained here. Davidovitz and Steinberg (1997) have also advocated using
the Aharonov–Bohm effect, which is implicit in (48), to measure quantized vorticity in a
superfluid.

The problem of sound scattered by a more general vortical structure is interesting. The
results of FLS and Llewellyn Smith and Ford (2001a) suggest that, in this MAE framework,
the scattered field will just be determined by the total circulation of the vortices, provided they
are separated by a distance of the order of the interaction length or less, with vortex–vortex
interactions on the healing length scale being set aside.

Finally, a natural extension of this work is to consider how these results change for a
two-fluid model. Given the results of this paper and of FLS, one might conjecture that the
scattering amplitude would again be the same.
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